Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625865

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are known for their high environmental persistence and potential toxicity. The presence of PFAS has been reported in many dairy products. However, the mechanisms underlying the accumulation of PFAS in these products remain unclear. Here, we used native mass spectrometry and molecular dynamics simulations to probe the interactions between 19 PFAS of environmental concern and two isoforms of the major bovine whey protein ß-lactoglobulin (ß-LG). We observed that six of these PFAS bound to both protein isoforms with low- to mid-micromolar dissociation constants. Based on quantitative, competitive binding experiments with endogenous ligands, PFAS can bind orthosterically and preferentially to ß-LG's hydrophobic ligand-binding calyx. ß-Cyclodextrin can also suppress binding of PFAS to ß-LG owing to the ability of ß-cyclodextrin to directly sequester PFAS from solution. This research sheds light on PFAS-ß-LG binding, suggesting that such interactions could impact lipid-fatty acid transport in bovine mammary glands at high PFAS concentrations. Furthermore, our results highlight the potential use of ß-cyclodextrin in mitigating PFAS binding, providing insights toward the development of strategies to reduce PFAS accumulation in dairy products and other biological systems.

2.
J Inorg Biochem ; 249: 112391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837941

RESUMO

The cytochrome P450 enzymes (CYPs) are heme-thiolate monooxygenases that catalyse the insertion of an oxygen atom into the C-H bonds of organic molecules. In most CYPs, the activation of dioxygen by the heme is aided by an acid-alcohol pair of residues located in the I-helix of the enzyme. Mutation of the threonine residue of this acid-alcohol pair of CYP199A4, from the bacterium Rhodospeudomonas palustris HaA2, to a glutamate residue induces peroxygenase activity. In the X-ray crystal structures of this variant an interaction of the glutamate side chain and the distal aqua ligand of the heme was observed and this results in this ligand not being readily displaced in the peroxygenase mutant on the addition of substrate. Here we use a range of bulky hydrophobic and nitrogen donor containing ligands in an attempt to displace the distal aqua ligand of the T252E mutant of CYP199A4. Ligand binding was assessed by UV-visible absorbance spectroscopy, native mass spectrometry, electron paramagnetic resonance and X-ray crystallography. None of the ligands tested, even the nitrogen donor ligands which bind directly to the iron in the wild-type enzyme, resulted in displacement of the aqua ligand. Therefore, modification of the I-helix threonine residue to a glutamate residue results in a significant strengthening of the ferric distal aqua ligand. This ligand was not displaced using any of the ligands during this study and this provides a rationale as to why this mutant can shutdown the monooxygenase pathway of this enzyme and switch to peroxygenase activity.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Heme/química , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro/química , Nitrogênio , Treonina , Glutamatos
3.
Chem Rev ; 122(8): 7327-7385, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449207

RESUMO

Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.


Assuntos
Descoberta de Drogas , Proteoma , Descoberta de Drogas/métodos , Espectrometria de Massas/métodos , Proteínas de Membrana , Termodinâmica
4.
J Am Chem Soc ; 143(50): 21379-21387, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34886668

RESUMO

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, we could identify novel natural product ligands of human drug targets without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


Assuntos
Produtos Biológicos/química , Ligantes , Proteínas/química , Produtos Biológicos/metabolismo , Anidrase Carbônica I/química , Anidrase Carbônica I/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Metabolômica/métodos , Proteínas/metabolismo , Espectrometria de Massas em Tandem
5.
Nat Commun ; 12(1): 6626, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785665

RESUMO

During systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that 'escapes' effective reductive inactivation to engage in selective oxidative activation of key target proteins.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Peroxidases/genética , Peroxirredoxinas/metabolismo , Triptofano/metabolismo
6.
Anal Chem ; 92(23): 15420-15428, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200920

RESUMO

Organophosphates (OPs) are used worldwide as pesticides. However, acute and chronic exposure to OPs can cause serious adverse health effects. The mechanism of delayed OP toxicity is thought to involve off-target inhibition of serine proteases, although the precise molecular details remain unclear owing to the lack of an analytical method for global detection of protein targets of OPs. Here, we report the development of a mass spectrometry method to identify OP-adducted proteins from complex mixtures in a nontargeted manner. Human plasma was incubated with the OP dichlorvos that was 50% isotopically labeled and 50% unlabeled. Proteins and protein adducts were extracted, digested, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect "twin ions" of peptides that were covalently modified by a chemical reaction with dichlorvos. The LC-MS/MS data were processed by a blended data analytics software (Xenophile) to detect the amino acid residue sites of proteins that were covalently modified by exposure to OPs. We discovered that OPs can transmethylate the N, S, and O side chains of His, Cys, Glu, Asp, and Lys residues. For model systems, such transmethylation reactions were confirmed by LC-MS, nuclear magnetic resonance (NMR), and rationalized using electronic structure calculations. Methylation of the ubiquitous antioxidant glutathione by dichlorvos can decrease the reducing/oxidizing equilibrium of glutathione in liver extracts, which has been implicated in diseases and pathological conditions associated with delayed OP toxicity.


Assuntos
Proteínas Sanguíneas/química , Nitrogênio/química , Organofosfatos/química , Oxigênio/química , Enxofre/química , Cromatografia Líquida , Humanos , Metilação , Organofosfatos/toxicidade , Espectrometria de Massas em Tandem
7.
Anal Chem ; 92(6): 4614-4622, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32096628

RESUMO

Perfluoroalkyl substances (PFASs) persist and are ubiquitous in the environment. The origins of PFAS toxicity and how they specifically affect the functions of proteins remain unclear. Herein, we report that PFASs can strongly inhibit the activity of human carbonic anhydrases (hCAs), which are ubiquitous enzymes that catalyze the hydration of CO2, are abundant in the blood and organs of mammals, and involved in pH regulation, ion homeostasis, and biosynthesis. The interactions between PFASs and hCAs were investigated using stopped-flow kinetic enzyme-inhibition measurements, native mass spectrometry (MS), and ligand-docking simulations. Narrow-bore emitters in native MS with inner diameters of ∼300 nm were used to directly and simultaneously measure the dissociation constants of 11 PFASs to an enzyme, which was not possible using conventional emitters. The data from native MS and stopped-flow measurements were in excellent agreement. Of 15 PFASs investigated, eight can inhibit at least one of four hCA isozymes (I, II, IX, and XII) with submicromolar inhibition constants, including perfluorooctanoic acid, perfluorooctanesulfonamide, and perfluorooctanesulfonic acid. Some PFASs, including those with both short and long perfluoromethylene chains, can effectively inhibit at least one hCA isozyme with low nanomolar inhibition constants.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Caprilatos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Poluentes Ambientais/farmacologia , Fluorocarbonos/farmacologia , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Inibidores da Anidrase Carbônica/análise , Cristalografia por Raios X , Poluentes Ambientais/análise , Fluorocarbonos/análise , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Ligantes , Espectrometria de Massas , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
8.
Anal Chem ; 92(1): 1130-1137, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31778608

RESUMO

Netropsin is one of the first ligands to be discovered that selectively binds to the minor groove of DNA and is actively used as a scaffold for developing potential anticancer and antibiotic agents. The mechanism by which netropsin binds to hairpin DNA remains controversial with two competing mechanisms having been proposed. In one mechanism, netropsin binding induces a hairpin-to-duplex DNA transition. Alternatively, netropsin binds in two thermodynamically different modes at a single duplexed AATT site. Here, results from native mass spectrometry (MS) with nanoscale ion emitters indicate that netropsin can simultaneously and sequentially bind to both hairpin and duplex DNA. Duplex DNA was not detected using conventional MS with larger emitters because nanoscale emitters significantly reduce the extent of salt adduction to ligand-DNA complex ions, including in the presence of relatively high concentrations of nonvolatile salts. Based on native MS and polyacrylamide gel electrophoresis results, the abundances of hairpin and duplex DNA are unaffected by the addition of netropsin. By native MS, the binding affinities for five ligand-DNA and DNA-DNA interactions can be rapidly obtained simultaneously. This research indicates a "simultaneous binding mechanism" for the interactions of netropsin with DNA.


Assuntos
DNA/metabolismo , Netropsina/metabolismo , DNA/genética , Eletroforese em Gel de Poliacrilamida , Sequências Repetidas Invertidas , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray/métodos , Streptomyces/química
9.
ACS Cent Sci ; 5(2): 308-318, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834319

RESUMO

Electrospray ionization (ESI) mass spectrometry (MS) is a crucial method for rapidly determining the interactions between small molecules and proteins with ultrahigh sensitivity. However, nonvolatile molecules and salts that are often necessary to stabilize the native structures of protein-ligand complexes can readily adduct to protein ions, broaden spectral peaks, and lower signal-to-noise ratios in native MS. ESI emitters with narrow tip diameters (∼250 nm) were used to significantly reduce the extent of adduction of salt and nonvolatile molecules to protein complexes to more accurately measure ligand-protein binding constants than by use of conventional larger-bore emitters under these conditions. As a result of decreased salt adduction, peaks corresponding to protein-ligand complexes that differ in relative molecular weight by as low as 0.06% can be readily resolved. For low-molecular-weight anion ligands formed from sodium salts, anion-bound and unbound protein ions that differ in relative mass by 0.2% were completely baseline resolved using nanoscale emitters, which was not possible under these conditions using conventional emitters. Owing to the improved spectral resolution obtained using narrow-bore emitters and an analytically derived equation, K d values were simultaneously obtained for at least six ligands to a single druggable protein target from one spectrum for the first time. This research suggests that ligand-protein binding constants can be directly and accurately measured from solutions with high concentrations of nonvolatile buffers and salts by native MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...